Motor CAD Software

Motor-CAD Thermal

The thermal model in Motor-CAD is based upon analytical lumped-circuit analysis making it extremely fast to calculate. This allows the user to perform ‘what-if’ calculations in real time. Alternative numerical methods typically require days or even weeks to model and several hours to calculate a solution.

All the thermal resistances and capacitances in the Motor-CAD model are calculated automatically from geometric dimensions and material properties. The user does not need to be familiar with complex heat transfer phenomena such as dimensionless analysis correlations for convection. Motor-CAD automatically selects and solves the most appropriate formulation for a given surface and the cooling type selected. Motor-CAD features efficient, accurate and robust mathematical algorithms for forced and natural convection, liquid cooling, radiation and conduction. An extensive library of proven laminar and turbulent convection correlations are used to give accurate models for all internal and external surfaces. The airgap model includes laminar, vortex and turbulent convection.

The software is used to optimise the cooling of a wide variety of motor types and cooling methods. The fast calculation speeds are huge benefit when modelling complex duty cycles, such as traction motor drive cycles, and applications such as elevator load cycles.

Thermal Complex Duty Cycle

Motor-CAD modules are available for the following motor types:

  • Brushless permanent magnet motors (BPM)
  • Outer rotor BPM motors
  • Induction motors
  • Permanent magnet DC machines
  • Switched reluctance motors
  • Synchronous reluctance motors
  • Synchronous machines
  • Claw pole machines
  • Universal motors

There are many different motor types, housing types and cooling types available in Motor-CAD.

Thermal Radial Cross Section

Motor-CAD models are available for the following cooling methods:

  • natural convection (TENV)
  • forced convection (TEFC)
  • through ventilation
  • water jackets (several configurations)
  • submersible
  • flooded
  • wet rotor and wet stator
  • spray cooling
  • radiation
  • conduction

Users are also able to include various mounting configurations in the model that can provide heating or extra cooling to the machine.

Thermal Cooling Circuit


FE-Therm Module

Motor-CAD uses powerful analytical methods to calculate the performance of electric machines and cooling systems.

MDL’s FE-Therm add-on module provides increased detail on conduction heat transfer in various components. For example this allows visualisation of the hotspot in the winding.

It can be used to analyse conduction heat transfer for complex geometries such as multi-layer interior magnet motor rotors.

FE-Therm can be used to calibrate analytical lumped circuit models, thus improving accuracy.

It is fully automated and takes only a few seconds to calculate.

This image shows an automatic model generation with detailed conductor mesh:

The image below is a form wound machine showing the winding hotspot:

This shows slot water jacket cooling with two cooling ducts inside the slot:

This shows magnet losses impacting on temperatures:

The features in the FE-Therm module allow for a full 3D model of the machine to be generated with results as shown here:

Latest News


Date: 21st - 24th May 2017 Location: Miami Dr James Goss will be attending and presenting a paper titled “A Fourier Approach for Computationally Efficient Modelling of the Operating Envelope in PMSMs” For more information please click...

read more


Date: 19th  April 2017 Location: University of Nottingham, United Kingdom Attended by Dr Mircea Popescu and Giuseppe Volpe For more information please click here.

read more


The Motor-CAD software is distributed worldwide. Our carefully selected partners are experts in the use of the software and can provide support and training.

To find a distributor near you, click on the link below.

Newsletter Signup