Analytical Prediction of Electromagnetic Performance of Surface-Mounted Permanent Magnet Machines Based on Subdomain Model Accounting for Tooth-Tips

L. J. Wu1, Z. Q. Zhu1, Fellow, IEEE, D. Staton2, M. Popescu2, and D. Hawkins2

1Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
2Motor Design Ltd, 4 Scotland Street, Ellesmere, Shropshire, SY12 0EG, UK

The developed subdomain model accounting for tooth-tips can accurately predict the open-circuit, armature reaction and on-load field distributions in surface-mounted permanent magnet machines. Based on this field model, their electromagnetic performance of the machine, such as the cogging torque, back-EMF and electromagnetic torque, and winding inductances are calculated. The model can also be used for the evaluation of demagnetization withstand capability. The finite element analysis confirms excellent accuracy of the developed analytical model.

\textbf{Index Terms}—Cogging torque, demagnetization withstand capability, electromagnetic torque, inductance, magnetic field, Maxwell stress tensor, slotting effect, subdomain model.

I. INTRODUCTION

Analytical models remain an important tool for understanding, design and optimisation of surface-mounted permanent magnet machines. These machines excel conventional machines in efficiency, power and torque densities and are increasingly popular in domestic, industrial, and aerospace applications. The objective of this paper is to analytically predict the electromagnetic performance and parameters, such as cogging torque, back-EMF, and electromagnetic torque, inductance, and demagnetization withstand capability of surface-mounted permanent magnet (PM) machines based on a subdomain field model accounting for tooth-tips.

Many papers addressed the subdomain field model for the PM machines [1-6]. Its accuracy was demonstrated to be higher than the permeance model [7, 8] for the cogging torque in [9]. The open-circuit subdomain model neglecting tooth-tips was proposed in [1-6], while the subdomain model for predicting armature reaction field was reported in [10, 11]. However, the influence of tooth-tips is neglected in all these models. Thus, the subdomain model accounting for tooth-tips for open-circuit [12] and armature reaction [13] fields were proposed and its excellent accuracy was demonstrated in literature. In this paper, the load field is solved by the subdomain model accounting for tooth-tips, a combination of models in [12, 13]. The relative permeance of magnets is accurately accounted for. This analytical field model will be used as a basis for predicting the electromagnetic performance and parameters as well as the demagnetization withstand capability.

The popular methods for predicting electromagnetic performance are based on the PM flux linkage, an integral of normal flux density along stator bore considering the coil in the slot as either a punctual current [7, 14-19] or a current sheet over the slot opening [20-22]. But the flux passing through the conductors are neglected or approximate. Thus, the flux linkage will be predicted by an integral of vector potential in the conductor area in this paper. The back-EMF and electromagnetic torque will be calculated from the obtained flux linkage. The flux passing through the conductors can be accurately accounted for by this method.

The major advantage of the subdomain model accounting for tooth-tips is its accurate field prediction in both the air-gap and slot [13]. Hence a good example of its application is the prediction of winding inductance, of which a large portion may be the slot leakage inductance in the PM machines [23]. The classic 1-D models for the air-gap inductance calculation of the conventional machines [24-26] are not suitable for the permanent magnet machines due to relatively large effective air-gap length in PM machines [23, 27]. A 2-D model was reported in [27] but was developed for slotless machines. The 2-D models for slotted machines to date [28-30] usually treated the winding as a current sheet over slot opening and thus the slotting effect was approximate. As for the slot leakage inductances, the classic 1-D models [26, 30] are adequate for the conventional machines which usually have deep and narrow slots, but may not be appropriate for permanent magnet machines. Different from the conventional machines, the non-overlapping winding, i.e. two sides of coils are housed in one slot circumferentially side-by-side, finds popular applications but results in the asymmetrical field distribution in the PM machines [23]. The less number of slots in the non-overlapping fractional-slot machines also makes the slot width comparable to slot depth. A 2-D model for the slot leakage inductances was proposed in [23], which can deal with the non-overlapping winding distribution. The application of subdomain model to the inductance prediction can be found in [11] considering both non-overlapping and overlapping windings. Although the 2-D field distribution can be predicted by the subdomain model in both slot and air-gap, the inductance is calculated from a line integral of flux density along certain path either radially in the middle of slot for the slot leakage inductances or on the stator bore for the air-gap inductances. However, the complicated flux linkage in the slot and slot opening cannot be simply dealt with by a line integral of flux density. In addition, the tooth-tips are neglected and hence it is suitable for only open slot machines. In this paper,
the method in [11] and [27], which calculates the area integral of the product of vector potential and current density, is applied to the inductance prediction based on the subdomain field model accounting for tooth-tips.

The subdomain model accounting for tooth-tips can also be used for assessing the risk of irreversible demagnetization. Its advantage is that the influence of slot and tooth-tips on the demagnetization withstand capability can be studied. An application of slotless analytical field to the evaluation of demagnetization in Halbach turbular machines can be found in [31].

The paper is organised as follows. Section II describes the analytical field modelling, its application to the calculation of back-EMF, torque, inductance, and demagnetization withstand capability is presented in Section III together with the finite element (FE) validation in section IV, while the detailed derivation of final equation set for field model is put in the appendix. The finite element analysis on three PM machines shows excellent accuracy of the developed analytical model.

II. ANALYTICAL FIELD MODEL

The analytical modelling is based on the following assumptions: (1) Infinite permeable iron materials; (2) Negligible end effect; (3) Linear magnet properties; (4) Simplified slot but with tooth-tips as shown in Fig. 1; (5) Non-conductive stator/rotor laminations; (6) Uniform distributed current density in conductor area.

The coils may be accommodated in the slot in two alternative ways as shown in Fig. 2, viz. non-overlapping and overlapping windings. The single layer winding, viz. one coil side per slot, can be considered as a special case of either Fig. 2(a) or (b), having current densities \(J_{i1} = J_{i2} \). In the overlapping winding machine, \(R_{sm} = \left(\frac{R_{sb}^2 + R_{t}^2}{2} \right)^{1/2} \) to make the two parts of each slot have the same area.

\[\begin{align*}
\frac{\partial^2 A_z}{\partial r^2} + \frac{1}{r} \frac{\partial A_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_z}{\partial \alpha^2} &= -\frac{\mu_0}{r} \left(M_r - \frac{\partial M_\alpha}{\partial \alpha} \right) \\
\frac{\partial^2 A_z}{\partial r^2} + \frac{1}{r} \frac{\partial A_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_z}{\partial \alpha^2} &= -\mu_0 J \\
\frac{\partial^2 A_z}{\partial r^2} + \frac{1}{r} \frac{\partial A_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_z}{\partial \alpha^2} &= 0
\end{align*} \]

For radial magnetization:

\[M_{rk} = M_{r} \cos \left(k \alpha - k \omega t - k \alpha_c \right) \]
\[M_{ak} = M_{a} \sin \left(k \omega t - k \alpha_c \right) \]
\[M_{ak} = M_{a} \cos \left(k \alpha - k \omega t + k \alpha_c \right) \]
\[M_{rak} = M_{r} \cos \left(k \alpha - k \omega t + k \alpha_c \right) \]
\[M_{a} = M_{a} \sin \left(k \omega t + k \alpha_c \right) \]
\[M_{ak} = M_{a} \cos \left(k \alpha + k \omega t - k \alpha_c \right) \]
\[M_{a} = M_{a} \cos \left(k \omega t + k \alpha_c \right) \]

For parallel magnetization:

\[M_{rk} = \frac{4 \pi B_{r}}{k \pi \mu_0} \sin \left(k \pi \alpha \right) \]
\[M_{ak} = 0 \]

Fig. 1. Symbols and types of sub-regions.
\[M_{al} = (B_l / \mu_0) \alpha_p (A_{al} + A_{2l}) \quad k / p = 1, 3, 5, \ldots \] (12)
\[M_{ak} = (B_l / \mu_0) \alpha_p (A_{al} - A_{2l}) \quad k / p = 1, 3, 5, \ldots \] (13)
where
\[A_{al} = \frac{\sin \left((k+1) \alpha_p \left(\pi / 2 / p \right) \right)}{(k+1) \alpha_p \left(\pi / 2 / p \right)} \] (14)
\[A_{ak} = \frac{\sin \left((k-1) \alpha_p \left(\pi / 2 / p \right) \right)}{(k-1) \alpha_p \left(\pi / 2 / p \right)} \] (15)
where \(B_l \) is the residual flux density of magnet and \(\alpha_p \) is the pole arc to pitch ratio, \(\alpha_0 \) is the rotor rotational speed, \(\alpha_0 \) is the rotor initial position, \(p \) is the number of pole pairs.

\[j \]
\[r \]
\[\alpha \]
\[J_1 \]
\[J_2 \]
\[b_{ax} \]
\[\phi \]

Fig. 3. Current density function of non-overlapping winding.

The current density \(J \) as shown in Fig. 3 can be expressed by:
\[J = J_{i0} + \sum_n J_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (16)
for \(\alpha_i, b_{ax} \leq \alpha_i, b_{ax} / 2 \), where \(\alpha_i \) is the slot position, \(b_{ax} \) is the slot width angle as shown in Fig. 2(b).
\[J_{i0} = (J_1 + J_2) d / b_{ax} \] (17)
\[J = \frac{2}{n \pi} (J_1 + J_2) \cos \left[\frac{n \pi d}{b_{ax}} \right] \] (18)

Considering the boundary condition along the rotor yoke, the vector potential in the magnets can be expressed by:
\[A_{3l} = \sum_i \left[C_{il} A_l + C_{2il} M_{al} - C_{3il} M_{ak} \right] \cos (k \alpha) + \sum_i \left[C_{il} C_1 + C_{2il} M_{al} + C_{3il} M_{ak} \right] \sin (k \alpha) \] (20)
where
\[C_{il} = \left[\frac{R_l (r / R) - 1}{k^2 - 1} \right] \] (21)
\[C_{2il} = \frac{\mu_0}{k^2 - 1} \left[R_l (r / R)^n + r \right] \] (22)
\[C_{3il} = \frac{\mu_0}{k^2 - 1} \left[R_l (r / R)^n - 1 \right] \] (23)
\[G_i = \left(R_i / R_l \right)^n \] (24)
The general solution of vector field in the air-gap is:
\[A_{2l} = \sum_i \left[C_1 (r / R) \right] + B_2 (r / R) \] (25)
\[\sum_i \left[C_1 (r / R) \right] + B_2 (r / R) \] (26)
where \(R_i \) is the radius of stator bore.

Considering the boundary condition along the bottom and both sides of the slot, the vector potential distribution in the slot of the non-overlapping winding machine can be derived as:
\[A_{3l} = A_0 + \sum_n A_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (27)
where
\[A_0 = \mu_n J_{3l} \left[2 R_n^2 / \ln (r - r') / 4 + Q_{b0} \right] \] (28)
\[A_n = D_n \left[G_i (r / R_n)^n + (r / R)^n \right] \] (29)
\[+ \mu_n J_{3l} \left[2 R_n^2 / \ln (r - r') / 4 + Q_{b0} \right] \] (30)
\[\sum_{k=0}^{\infty} \left[H_n (r / R_n)^n + (r / R)^n \right] \] (31)
\[A_{3l} = A_0 + \sum_n A_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (32)
\[A_{3l} = A_{3l} + \sum_n A_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (33)
\[A_{3l} = A_{3l} + \sum_n A_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (34)
\[A_{3l} = A_{3l} + \sum_n A_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (35)
\[A_{3l} = A_{3l} + \sum_n A_n \cos \left[E_n (\alpha + b_{ax} / 2 - \alpha_i) \right] \] (36)
The unknown coefficients \(A_2, B_2, C_2, D_2, C_3, D_3, Q_{b0}, C_4, D_4, Q_{b4}, D_5, Q_{b5}, D_5, Q_{b5} \) and \(D \) in the expressions of vector potentials can be determined by applying the interface conditions between subdomains, viz. the continuations of normal flux density and tangential vector potential across the interface. The detail calculation method is given in the appendix.

2) Flux Density
The radial and circumferential components of flux density can be obtained from the vector potential distribution by:
\[B_r = \frac{1}{r} \frac{\partial A_r}{\partial \alpha} \] (37)
\[B_r = \frac{1}{r} \frac{\partial A_r}{\partial r} \] (38)
The magnetic intensity can be obtained by:
\[B = \mu_r \mu_0 H + \mu M \] (39)
in the magnet and
\[B = \mu_h H \] (40)
in the air-gap, slot opening and slot.

Therefore, the flux density in the magnet can be given by:
\[B_r = -\left(\frac{1}{r} \sum_i k (C_{il} A_l + C_{2il} M_{al} - C_{3il} M_{ak}) \sin (k \alpha) \right) \] (41)
\[+ \left(\frac{1}{r} \sum_i k (C_{il} A_l + C_{2il} M_{al} + C_{3il} M_{ak}) \cos (k \alpha) \right) \] (42)
for the radial component and
\[B_{sa} = -(1/r) \sum \left(C_{sa} A_i + C_{sa} M_{ak} - C_{sa} M_{ak} \right) \cos(k\alpha) \]
\[- (1/r) \sum \left(C_{sa} C_i + C_{sa} M_{ak} + C_{sa} M_{ak} \right) \sin(k\alpha) \]
(41)

for the circumferential component, where

\[C_{sa} = k \left[(r/R_{sa})^e - (r/R)^e \right] \]
(42)

\[C_{sa} = \frac{\mu_0}{k^2 - 1} \left[k^2 R_r (r/R)^e + r \right] \]
(43)

\[C_{sa} = \frac{R_b k}{k^2 - 1} \left[-R_r (r/R)^e + r \right] \]
(44)

The flux density in the air-gap can be given by:
\[B_{sb} = \sum B_{sa} \sin(k\alpha) + \sum B_{sa} \cos(k\alpha) \]
(45)

for the radial component and
\[B_{sa} = \sum B_{sa} \cos(k\alpha) + \sum B_{sa} \sin(k\alpha) \]
(46)

where

\[B_{sa} = -k \left[A_r (r/R)^e + B_r (r/R_a)^e \right]/r \]
(47)

\[B_{sa} = k \left[C_r (r/R)^e + D_r (r/R_a)^e \right]/r \]
(48)

\[B_{sa} = -k \left[A_r (r/R)^e - B_r (r/R_a)^e \right]/r \]
(49)

\[B_{sa} = -k \left[C_r (r/R)^e - D_r (r/R_a)^e \right]/r \]
(50)

As for the non-overlapping winding, the flux density in the ith slot can be expressed as:
\[B_{si} = \sum \int \frac{E_i D_i}{r} \left[G_i (r/R_a)^e + (r/R)^e \right] \]
\[\cdot \sin \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] - \mu_0 \sum \frac{J_{sa}}{E_n^2 - 4} \]
\[\cdot \left[E_a \left(r - R_{sa} (r/R_a)^e \right) \right] \sin \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] \]
(51)

for the radial component and
\[B_{si} = -\mu J_{sa} \left(R_{sa}^2 - r_i^2 \right) / (2r) \]
\[- \sum \int \frac{E_i D_i}{r} \left[G_i (r/R_a)^e - (r/R)^e \right] \cos \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] \]
\[- 2\mu_0 \sum \frac{J_{sa}}{E_n^2 - 4} \left[-R_{sa} (r/R_a)^e - \right] \cos \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] \]
(52)

for the circumferential component.

As for the overlapping winding, the radial component flux density in the slot can be given as:
\[B_{si} = \sum \int \frac{E_i D_i}{r} \left[G_i (r/R_a)^e + (r/R)^e \right] \]
\[\cdot \sin \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] \]
(53)

and the circumferential component flux density in the slot can be expressed by:
\[B_{si} = \sum \int \frac{E_i D_i}{r} \left[G_i (r/R_a)^e - (r/R)^e \right] \]
\[\cdot \cos \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] - \mu_0 J_{sa} \left(R_{sa}^2 - r_i^2 \right) / (2r) \]
(54)

in the bottom part of slot and
\[B_{si} = -\mu_0 \left[J_{sa} \left(R_{sa}^2 - r_i^2 \right) + J_{sa} \left(R_{sa}^2 - R_m^2 \right) \right] / (2r) \]
\[- \sum \int \frac{E_i D_i}{r} \left[G_i (r/R_a)^e - (r/R)^e \right] \]
\[\cdot \cos \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] \]
(55)

in the top part of slot.

The flux density in the ith slot opening can be expressed as:
\[B_{si} = -(1/r) \sum \int \frac{F_i}{r} \left[C_i (r/R)^e + D_i (r/R_a)^e \right] \]
\[\sin \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] \]
(56)

for the radial component and
\[B_{si} = -(1/r) \sum \int \frac{F_i}{r} \left[C_i (r/R)^e - D_i (r/R_a)^e \right] \]
\[\cdot \cos \left[E_n \left(\alpha + b_n / 2 - \alpha_i \right) \right] - D / r \]
(57)

for the circumferential component.

III. ELECTROMAGNETIC PERFORMANCE

1) Back-EMF and Torque

For Non-Overlapping Winding

The flux linkage with one coil side as shown in Fig. 2(a) can be calculated from the vector potential distribution [32]:
\[\psi_{li} = l_a \frac{N}{A} \int \frac{E_i d d}{A} \sum (Z_n / E_n) \sin (E_n d) \]
(58)

where \(l_a \) is the active length, \(N \) is the number of turns per coil, \(A \) is the area of one coil side, \(d \) is the circumferential width of the coil side, and
\[Z_n = \int A \alpha d \]
\[= Q_{li} \left(R_{sa}^2 - R_n^2 \right) / 2 + \mu_0 J_{li} \]
\[\cdot (4R_n^4 \ln R_{sa} - 4R_n^2 R_n^2 \ln R_n - 3R_n^4 + 2R_n^3 R_n^2 + R_n^4) / 16 \]
(59)

\[Z_n = \int A \alpha d \]
\[= \frac{D_G G_s \left(R_{sa}^2 - R_n^2 \right) + D_{sa} \left(R_{sa}^2 G_s - R_n^2 \right)}{2 + E_n} \]
\[+ \frac{\mu_0 J_{sa} R_{sa}^2}{4 E_n^2 - 4} \left(R_{sa}^2 - R_n^2 \right) \]
\[+ \frac{2 \mu_0 J_{sa} R_{sa}^2}{E_n^2 - 4} \left(R_{sa}^2 G_s - R_n^2 \right) \]
(60)

Similarly, the flux linkage with another coil side in the slot is:
\[\psi_{l2} = l_a \left(N_i / A \right) \left[Z_n d + \sum (Z_n / E_n) \sin (n\pi / E_n d) \right] \]
(61)

B. For Overlapping Winding

The flux linkage with one coil side as shown in Fig. 2(a) can be calculated from the vector potential distribution [32]:
\[\psi_{li} = l_a \frac{N}{A} \int \frac{E_i d d}{A} \sum (Z_n / E_n) \sin (n\pi / E_n d) \]
(62)
where
\[Z_{i2} = \int_{R_m}^{R_o} A_{i2} A_{i2} d\theta \]
\[= \frac{Q_{i2}}{2} \left(R_m^2 - R_o^2 \right) / 2 + \mu_0 J_{i2} \left[\left(R_m^2 \ln R_m - R_o^2 \ln R_o \right) - \left(2 R_m^2 - 2 R_o^2 \right) \right] / 8 + \mu_0 J_{i2} \left[4 R_m^2 \ln R_m - 4 R_o^2 R_m^2 \ln R_m - 3 R_m^2 + 2 R_o^2 R_m^2 + R_o^4 \right] / 16 \]

(63)

Similarly, the flux linkage with another coil side in the slot is:
\[\psi_{i2} = I_n \left(N_s / I_1 \right) Z_{i2} b_{ss} \]

(64)

where
\[Z_{i2} = \int_{R_m}^{R_o} A_{i2} A_{i2} d\theta \]
\[= \frac{Q_{i2}}{2} \left(R_m^2 - R_o^2 \right) / 2 + \mu_0 J_{i2} \left[\left(R_m^2 \ln R_m - R_o^2 \ln R_o \right) - \left(2 R_m^2 - 2 R_o^2 \right) \right] / 8 + \mu_0 J_{i2} \left[4 R_m^2 \ln R_m - 4 R_o^2 R_m^2 \ln R_m - 3 R_m^2 + 2 R_o^2 R_m^2 + R_o^4 \right] / 16 \]

(65)

It should be noted that \(J_{i2}, J_{ib}, J_{is}, \) and \(J_{i2} \) are included in (59), (60), (63) and (65) for the calculation of inductance in the next section, but are zero for the calculation of open-circuit flux linkage.

The total flux linkage of each phase can be obtained by summing the flux linkages associated with all coil sides of the corresponding phase. Then, the back-EMF is calculated by the derivative of the flux linkage with respect to time when the winding is open-circuit.

The electromagnetic torque can be obtained from the back-EMF by:
\[T_{em} = (E_a I_a + E_b I_b + E_c I_c) / \omega_1 \]

(66)

As for the cogging torque, the calculation should be based on the open-circuit field. Many methods were proposed, such as the energy [33, 34], lateral force [35], and complex permeance [7, 8]. However, benefiting from the excellent accuracy in the airgap field prediction by the subdomain model accounting for tooth-tips, the Maxwell stress tensor is employed in this paper to calculate the cogging torque based on the open-circuit field distribution [5]:
\[T_c = (I_n r^2 / \mu_0) \int_0^{2\pi} B_{ax} B_{az} d\alpha \]

(67)

Equation (67) can also be used for predicting the total torque including both cogging and electromagnetic torques if the open-circuit flux density is substituted by the on-load flux density.

2) Inductances

The self- and mutual-inductances can be calculated from the energy [23, 27]:
\[L = 2 W_a / I_s^2 \]

(68)
\[M = (W_{ab} - W_a - W_b) / (I_s I_b) \]

(69)

where \(W_a, W_b, \) and \(W_{ab} \) are the magnetic energies when the magnets are not magnetized and the machine is fed with \(I_s \) only, \(I_b \) only, and both \(I_s \) and \(I_b \), respectively.

The energy can be obtained by [23, 27]:
\[W = \int_{\frac{I_a}{2}}^{\frac{I_a}{2}} \int_{\frac{I_b}{2}}^{\frac{I_b}{2}} A_{rd} \pi r dr \]

(70)

For the non-overlapping winding:
\[W = b_{sm} \sum_{i=1}^{n_p} Z_{i2} I_{i2} / 2 + b_{sm} \sum_{i=1}^{n_p} Z_{i2} I_{i2} / 4 \]

and for the overlapping winding:
\[W = b_{sm} \sum_{i=1}^{n_p} Z_{i2} I_{i2} / 2 \]

(71)

3) Evaluation of Demagnetization Withstand Capability

One of advantages of the developed model is that it can be used to evaluate the demagnetization withstand capability accounting for the stator slotting effect. To assess the risk of the partial irreversible demagnetization, the flux density distribution along the magnet surface needs to be evaluated for every rotor positions.

For uniform distributed magnets, it is enough evaluate only one magnet. The criterion to avoid partial irreversible demagnetization is within an electrical period:
\[D_{mg} = B_{mr} / B_d > B_d \]

(73)

for the radial magnetization, and
\[D_{mg} = \left[B_m \cos(\alpha - \alpha_{mr}) - B_d \sin(\alpha - \alpha_{mr}) \right] / B_d > B_d \]

for the parallel magnetization, where \(D_{mg} \) is equal to 1 or -1 for the outward and inward magnetization, respectively, \(\alpha_{mr} \) is the position of the magnet to be evaluated and \(B_d \) is the minimum flux density of magnet for safe operation at a specific temperature.

IV. FinitE Element Validation and investigation

The finite element analysis is carried out to validate the analytical prediction on three machines. Their main parameters are shown in Table I and the equal potential distributions when the machines are either open-circuit or fed with only \(I_s \) are shown in Fig. 4 and Fig. 5, respectively.

<table>
<thead>
<tr>
<th>Machine</th>
<th>I-III</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole number/slot number</td>
<td>8p/12s, 8p9s, 4p24s</td>
<td>8p/12s</td>
<td>8p9s</td>
<td>4p24s</td>
</tr>
<tr>
<td>Rated speed</td>
<td>400 (rpm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stator outer diameter</td>
<td>100</td>
<td>55.7</td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>Stator inner diameter</td>
<td>100</td>
<td>55.7</td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>Air-gap length</td>
<td>1</td>
<td>32</td>
<td>4.4</td>
<td>8.1</td>
</tr>
<tr>
<td>Rotor outer diameter</td>
<td>1</td>
<td>32</td>
<td>4.4</td>
<td>8.1</td>
</tr>
<tr>
<td>Rotor inner diameter</td>
<td>1</td>
<td>32</td>
<td>4.4</td>
<td>8.1</td>
</tr>
<tr>
<td>Magnet thickness</td>
<td>3</td>
<td>136</td>
<td>132</td>
<td>104</td>
</tr>
<tr>
<td>Winding turns/phase</td>
<td>1,05</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Magnet pitch</td>
<td>1.05</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coil pitch</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Slot-opening to slot-pitch ratio</td>
<td>0.3</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Slot-width to slot-pitch ratio</td>
<td>0.6</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

(a) 8-pole/12-slot
(b) 8-pole/9-slot
A. Back-EMF and Torque

Fig. 6 and Fig. 7 show the comparison between analytically and FE predicted back-EMF and electromagnetic torque waveforms of the 8-pole/12-slot and 8-pole/9-slot machines, respectively. All analytical models show a good agreement with FE. The difference between the predictions based on the subdomain models with/without accounting for tooth-tips is negligible for back-EMF and electromagnetic torque, since the influence of tooth-tips on the air-gap flux density distribution is small [12, 13]. But as the cogging torque is more sensitive, the neglect of tooth-tips shows relative large error in the cogging torque of the 8-pole/9-slot machine.
Fig. 7. Analytically and FE predicted back-EMF, cogging and electromagnetic torque waveforms of 8-pole/9-slot machine.

Fig. 8 shows the analytically predicted variation of average torque with the winding coil width d in the 8-pole/12-slot machine when all other parameters are kept same. But generally, the influence of coil width on the average torque is small. The influence can be noticeable only for the large slot-opening to slot-depth ratio.

B. Inductances

The analytical and FE predicted self- and mutual-inductances are compared in Table II. The excellent agreement between the predictions of both self- and mutual-inductances by FE and the analytical model considering the tooth-tips shows its much better accuracy than the model neglecting the tooth-tips.

C. Demagnetization Withstand Capability

The demagnetization withstand capability of the 8-pole/12-slot machine is evaluated under 60°C and 80°C. By way of example, $B_r=1.14$T and $B_d=0.3$T at 60°C and $B_r=1.11$T and $B_d=0.46$T at 80°C, for a moderate cost N35 magnet material.

Fig. 10 shows the comparison between the on-load flux density predictions on the surface of magnets by the analytical model and FE. The excellent agreement verifies the capability of the analytical model as an assessment tool of the irreversible demagnetization risk.

Table II

<table>
<thead>
<tr>
<th>Machine (Pole number/slot number)</th>
<th>8p/12s</th>
<th>8p/9s</th>
<th>4p/24s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-inductance, mH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical, no tooth-tips</td>
<td>1.53</td>
<td>2.80</td>
<td>2.04</td>
</tr>
<tr>
<td>Analytical, with tooth-tips</td>
<td>1.31</td>
<td>2.49</td>
<td>1.72</td>
</tr>
<tr>
<td>FE</td>
<td>1.29</td>
<td>2.51</td>
<td>1.69</td>
</tr>
<tr>
<td>Mutual-inductance, mH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical, no tooth-tips</td>
<td>-0.75</td>
<td>-0.19</td>
<td>-0.62</td>
</tr>
<tr>
<td>Analytical, with tooth-tips</td>
<td>-0.62</td>
<td>-0.15</td>
<td>-0.58</td>
</tr>
<tr>
<td>FE</td>
<td>-0.6</td>
<td>-0.15</td>
<td>-0.57</td>
</tr>
</tbody>
</table>

The variation of self- and mutual inductances with the slot opening width is studied by the analytical models considering/neglecting tooth-tips and the results are shown in Fig. 9. The difference between them increases with the difference between the slot opening width b_o and slot width b_s. Both self- and mutual-inductances can be significantly overestimated by the model neglecting tooth-tips for the machine having a relative small slot opening width b_o with respect to its slot width b_s.

Fig. 8. Analytically predicted variation of average torque with coil width.

Fig. 9. Analytically predicted variation of inductances with slot-opening of 8-pole/12-slot machine.
be used for the evaluation of demagnetization withstand capability. The FE analysis confirms the excellent accuracy of the analytical model.

APPENDIX

The flux density and vector potential along the interface between Regions I and II should satisfy:

\[B_{oi} = B_{fi} \quad \text{and} \quad A_i = A_f \]

(75)

C. Interface between Permanent Magnet and Air-gap

Because the normal flux density is continuous between magnet and air-gap, the following expressions can be obtained:

\[A_i G_i + B_i = A_i \left(1 + G_i^2\right) \]
\[+ \mu_0 \left(R_i G_i + R_m \right) M_{m1} - \left(R_i G_i + k R_m \right) M_{m2} \right] \left(k^2 - 1 \right) \]
\[C_i G_i + D_i = C_i \left(1 + G_i^2\right) \]
\[+ \mu_0 \left(R_i G_i + R_m \right) M_{m1} + \left(R_i G_i + k R_m \right) M_{m2} \right] \left(k^2 - 1 \right) \]

where

\[G_i = \left(R_i / R_m \right)^k \]

(78)

The circumferential magnetic field intensity is continuous between magnet and air-gap, and hence the following equations can be obtained:

\[\mu_0 \left(A_i G_i - B_i \right) = A_i \left(1 - G_i^2\right) \]
\[+ \mu_0 \left(k \left(R_m - R_i \right) G_i \right) M_{m1} - \left(R_m - R_i \right) G_i \right) M_{m2} \right] \left(k^2 - 1 \right) \]
\[\mu_0 \left(C_i G_i - D_i \right) = C_i \left(1 - G_i^2\right) \]
\[+ \mu_0 \left(k \left(R_m - R_i \right) G_i \right) M_{m1} + \left(R_m - R_i \right) G_i \right) M_{m2} \right] \left(k^2 - 1 \right) \]

D. Interface between Slot Opening and Slot

The circumferential component of the flux density along the interface between slot and slot opening can be expanded into Fourier series over \(\left[\alpha_i - b_{oi} / 2, \alpha_i + b_{oi} / 2 \right] \):

\[B_{i0} \left| R_s \right. = B_{00} + \sum_{n=1}^\infty B_{n0} \cos \left(F_m \left(\alpha + b_{oi} / 2 - \alpha_i \right) \right) \]

(81)

where

\[B_{00} = -D / R_i \]

(82)

\[B_{i0} = -F_m \left(C_{ai} - D_{ai} G_i \right) / R_i \]

(83)

\[G_i = \left(R_i / R_m \right)^{\gamma_c} \]

(84)

The circumferential component of the flux density in the slot along the radius \(R_i \) outside the slot opening region is zero since the stator core material is infinitely permeable. The circumferential component of the flux density along the radius \(R_s \) can be expanded into Fourier series over \(\left[\alpha_s - b_{oi} / 2, \alpha_s + b_{oi} / 2 \right] \):

\[B_{i0} \left| R_s \right. = B_0 + \sum_{n=0}^\infty B_n \cos \left(F_m \left(\alpha + b_{oi} / 2 - \alpha_i \right) \right) \]

(85)

where

\[B_0 = B_{00} \gamma_s \]

(86)

\[B_n = B_{n0} \gamma_s + \sum_{n=1}^\infty B_{n0} \gamma_s \]

(87)

where

\[\gamma_s = b_{oi} / b_{oi} \]

(88)
\[\gamma_n(n) = 4 \cos(n \pi / 2) \sin(E_{b_m} / 2) / (n \pi) \] (89)

\[\gamma(m, n) = \frac{2}{b_m} E_n \sum_m \left[\cos(m \pi) \sin \left(\frac{E_n b_m + b_m}{2} \right) - \sin \left(\frac{E_n b_m - b_m}{2} \right) \right] \] (90)

The circumferential component of the flux density along the interface between slot and slot opening can also be given as:

\[B_{3\alpha}(-\alpha_\gamma) = B_{3\alpha} + \sum_n B_{3\alpha n} \cos \left(E_n (\alpha + b_m / 2 - \alpha) \right) \] (91)

where for the non-overlapping winding:

\[B_{3\alpha 0} = -\mu_0 J_{\alpha 0} \left(R_{b_m}^2 - R_r^2 \right) / (2 R_r) \] (92)

\[B_{3\alpha n} = -\frac{1}{R_r} E_n D_n \frac{1}{G_i} \left(G_i^3 - 4 \right) \] (93)

and for the overlapping winding:

\[B_{\alpha 0} = -\mu_0 J_{\alpha 0} \left[J_{1 \alpha} \left(R_{b_m}^2 - R_r^2 \right) + J_{1 \odot} \left(R_{b_m}^2 - R_{b_m}^2 \right) \right] / (2 R_r) \] (94)

\[B_{\alpha n} = -E_n D_n \frac{1}{G_i} \] (95)

Applying the interface condition \(B_{3\alpha n}(-\alpha_\gamma) = B_{\alpha n}(-\alpha_\gamma) \), the following equations can be obtained:

\[B_{3\alpha n} = B_{3\alpha n \gamma} \] (96)

\[B_{\alpha n} = B_{\alpha n \gamma} + \sum_n B_{\alpha n \gamma} \] (97)

According to (96), for the non-overlapping winding:

\[D = \mu_0 J_{\alpha 0} \left(b_m / b_m \right) \left(R_{b_m}^2 - R_r^2 \right) / 2 \] (98)

and for the overlapping winding:

\[D = \mu_0 \left(b_m / b_m \right) \left[J_{1 \alpha} \left(R_{b_m}^2 - R_r^2 \right) + J_{1 \odot} \left(R_{b_m}^2 - R_{b_m}^2 \right) \right] / 2 \] (99)

The vector potential distribution in Region 3 along the radius \(R_r \) can be given by:

\[A_{3\alpha}(-\alpha_\gamma) = A_{3\alpha 0} + \sum_n A_{3\alpha n} \left[E_n (\alpha + b_m / 2 - \alpha) \right] \] (100)

where for the non-overlapping winding:

\[A_{\alpha 0} = \mu_0 J_{\alpha 0} \left(2 R_{b_m}^2 \ln R_r - R_r^2 \right) / 4 + Q_{\alpha 0} \] (101)

\[A_{\alpha n} = D_n \left(G_i^3 + 1 \right) + \mu_0 \left[J_{1 \alpha} \left(R_{b_m}^2 - R_r^2 \right) / E_n \right] \] (102)

and for the overlapping winding:

\[A_{\alpha 0} = Q_{\alpha 0} + \mu_0 \left[J_{1 \alpha} \left(R_{b_m}^2 \ln R_r - R_r^2 \right) / 2 \right] + J_{1 \odot} \left(R_{b_m}^2 - R_{b_m}^2 \right) \] (103)

\[A_{\alpha n} = D_n \left(G_i^3 + 1 \right) \] (104)

\(A_{\alpha 0} \) can be expanded into Fourier series over the slot opening, viz. \(\alpha_\gamma \leq \alpha \leq \alpha + b_m / 2 \):

\[A_{\alpha 0} = \sum_m A_{\alpha 0 m} \cos \left(F_m (\alpha + b_m / 2 - \alpha) \right) \] (105)

\[A_{\alpha 0} = \sum_n A_{\alpha 0 n} \left(b_m / b_m \right) \left(2 R_{b_m}^2 \ln R_r - R_r^2 \right) / 4 + Q_{\alpha 0} \] (106)

for the non-overlapping winding and

\[A_{\alpha 0} = \sum_n A_{\alpha 0 n} \left(b_m / b_m \right) \left(2 R_{b_m}^2 \ln R_r - R_r^2 \right) / 4 + Q_{\alpha 0} \] (107)

where

\[\left(b_m / b_m \right) \gamma_0(n) \] (109)

For the overlapping winding:

\[\gamma_0(n) \] (110)

The vector potential distribution along the radius \(R_r \) within the slot opening can also be expressed by:

\[A_{\alpha 0}(-\alpha_\gamma) = \sum_m A_{\alpha 0 m} \cos \left(F_m (\alpha + b_m / 2 - \alpha) \right) \] (111)

According to vector potential continuation:

\[A_{\alpha 0}(-\alpha_\gamma) = A_{\alpha 0} \] for \(\alpha_\gamma - b_m / 2 \leq \alpha \leq \alpha + b_m / 2 \) (112)

where

\[Q_{\alpha 0} = Q_{\alpha 0} + \sum_n A_{\alpha 0 n} \left[2 R_{b_m}^2 \ln R_r - R_r^2 \right] / 4 \] (113)

for the non-overlapping winding and

\[Q_{\alpha 0} = Q_{\alpha 0} + \sum_n A_{\alpha 0 n} \left[2 R_{b_m}^2 \ln R_r - R_r^2 \right] / 4 \] (114)

for the overlapping winding, and

\[C_{\alpha 0} + D_{\alpha 0} G_i = \sum_n A_{\alpha 0 n} \] (115)

E. Interface between Slot Opening and Air-gap

The circumferential component of the flux density along the stator bore within the slot opening can be obtained from (57) as:

\[B_{4\alpha}(-\alpha_\gamma) = B_{4\alpha 0} + \sum_m B_{4\alpha n} \cos \left(F_m (\alpha + b_m / 2 - \alpha) \right) \] (116)

where

\[B_{4\alpha 0} = -D / R_s \] (117)

\[B_{4\alpha n} = -F_n \left(C_{\alpha 0} G_i - D_{\alpha 0} \right) / R_s \] (118)

The circumferential component of the flux density along the stator bore outside the slot opening is zero since the stator core material is infinitely permeable. The circumferential component flux density along the stator bore can be expanded into Fourier series:

\[B_{m} = \sum_k \left[C_k \cos(k \alpha) + D_k \sin(k \alpha) \right] \] (119)

where

\[C_k = \sum_{m=1}^{\infty} B_{m \alpha} \eta_{m k} + \sum_{m=1}^{\infty} B_{m \alpha} \eta_{0 k} \] (120)

\[D_k = \sum_{m=1}^{\infty} B_{m \alpha} \eta_{m k} + \sum_{m=1}^{\infty} B_{m \alpha} \eta_{0 k} \] (121)

where

\[\eta_{m k}(m, k) = -k / \pi \left(F_m^2 - k^2 \right) \] (122)

\[\left[\cos(m \pi) \sin(k \alpha + k b_m / 2 - \sin(k \alpha - k b_m / 2) \right] \] (123)
\[\zeta_s(m,k) = \frac{k}{\pi} \left(F_m^2 - k^2 \right) \]

\[\left[\cos(m\pi)\cos(k\alpha + kb / 2) - \cos(k\alpha - kb / 2) \right] \]

\[\eta_{\alpha}(k) = 2\sin(kb / 2)\cos(k\alpha) / (k\pi) \]

\[\xi_{\alpha}(k) = 2\sin(kb / 2)\sin(k\alpha) / (k\pi) \]

The circumferential component of the flux density along the stator bore can also be given as:

\[B_{sR} = B_{sR0} \left\{ 1 - \frac{1}{R_k} \sum_{k} \left[(A_1 - B_2 G_2)\cos(k\alpha) + (C_1 - D_2 G_2)\sin(k\alpha) \right] \right\} \]

According to (119) and (126), it can be obtained that:

\[\begin{aligned}
 -kA_1 + kG_2 B_2 &= RC_s \\
 -kC_2 + kG_2 D_2 &= R D_s
\end{aligned} \]

The vector potential distribution along the stator bore can be given as:

\[A_1 = A_1 \left\{ 1 - \frac{1}{R_k} \sum_{k} \left[A_{2s}\cos(k\alpha) + A_{2s}\sin(k\alpha) \right] \right\} \]

\[A_{i\alpha} = \sum_{i} (A_{i\alpha} \sigma_i + A_{i\alpha} \tau_i) \]

The above expression can be expanded into Fourier series over slot opening:

\[A_{i\alpha} = \sum_{i} A_{i\alpha} \cos \left(\alpha + b_{i\alpha} / 2 - \alpha_0 \right) + A_{i\alpha0} \]

where

\[\sigma_{i\alpha}(k) = \left(\pi / b_{i\alpha} \right) \eta_{i\alpha}(k) \]

\[\tau_{i\alpha}(k) = \left(\pi / b_{i\alpha} \right) \xi_{i\alpha}(k) \]

\[\sigma_{i}(m,k) = \left(2\pi / b_m \right) \eta_{i}(m,k) \]

\[\tau_{i}(m,k) = \left(2\pi / b_m \right) \xi_{i}(m,k) \]

The vector potential distribution along the stator bore within the slot opening can also be expressed by:

\[A_{i\alpha} \left\{ 1 - \frac{1}{R_k} \sum_{k} \left[C_{gs} G_s + D_{gs} \cos \left(F_m \alpha + b_{i\alpha} / 2 - \alpha_0 \right) \right] \right\} \]

According to vector potential continuation:

\[A_{i\alpha} \left\{ 1 - \frac{1}{R_k} \sum_{k} \left[(A_{1\alpha} \sigma_{i\alpha} + A_{2\alpha} \tau_{i\alpha}) - D \ln R_s \right] \right\} \]

it can be obtained that:

\[Q_{i\alpha} = \sum_{i} (A_{i\alpha} \sigma_{i\alpha} + A_{i\alpha} \tau_{i\alpha}) - D \ln R_s \]

\[C_{gs} G_s + D_{gs} = \sum_{i} (A_{i\alpha} \sigma_{i\alpha} + A_{i\alpha} \tau_{i\alpha}) \]

Combining (76)-(77), (79)-(80), (97), (115), (127) and (141), the unknowns in the vector potential expressions can be predicted.

ACKNOWLEDGMENT

This work is financially supported by the Engineering and Physics Science Research Council, UK, Ref. EP/F016506/1, and Motor Design Ltd under the Motor-CAD/FLUX Partnership Scheme.

REFERENCES

